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We consider the Lie-Backlund symmetries and conservation laws of a perturbed 
KdV equation and NLS equation. The arbitrary coefficients of the perturbing 
terms can be related to the condition of existence of nontrivial LB symmetry 
generator. When the perturbed KdV equation is subjected to Painlev6 analysis 
a la Weiss, it is found that the resonance position changes compared to the 
unperturbed one. We prove the compatibility of the overdetermined set of 
equations obtained at the different stages of recursion relations, at least for one 
branch. All other branches are also indicated and difficulties associated them 
are discussed considering the perturbation parameter e to be small. We determine 
the Lax pair for the aforesaid branch through the use of Schwarzian derivative. 
For the perturbed NLS equation we determine the conservation laws following 
the approach of Chen and Liu. From the recurrence of these conservation laws 
a Lax pair is constructed. But the Painlev6 analysis does not produce a positive 
answer for the perturbed NLS equation. So here we have two contrasting 
examples of perturbed nonlinear equations: one passes the Painlev6 test and its 
Lax pair can be found from the analysis itself, but the other equation does not 
meet the criterion of the Painlev~ test, though its Lax pair is found in another way. 

1. I N T R O D U C T I O N  

T h e  e x i s t e n c e  o f  a n  i n f i n i t e  n u m b e r  o f  L i e - B a c k l u n d  s y m m e t r i e s  f o r  

p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  t h a t  p o s s e s s  a L ax  p a i r  is n o w  a p r o v e n  fact .  

O n  t h e  o t h e r  h a n d ,  s o m e  p e r t u r b e d  n o n l i n e a r  e q u a t i o n s  a re  a l so  i n t e g r a b l e  

in  t h e  s e n s e  t h a t  t h e y  d o  h a v e  a L a x  p a i r  u p  to  f irst  o r d e r  in  t h e  p e r t u r b a t i o n  

p a r a m e t e r  ( K o d a m a ,  1985) .  H e r e  we  c o n s i d e r  t h e  p e r t u r b e d  K d V  a n d  N L S  

e q u a t i o n .  

F i r s t  we  c o n s i d e r  t h e  P K d V  e q u a t i o n .  W e  see  t h a t  t h e  d i f f e r e n t  c o n s t a n t s  

o c c u r r i n g  in  t h e  p e r t u r b i n g  t e r m  is r e l a t e d  to  t h e  e x i s t e n c e  o f  n o n t r i v i a l  LB 

s y m m e t r i e s .  E n c o u r a g e d  b y  s u c h  a n  a n a l y s i s ,  we  t h e n  m a k e  a P a i n l e v 6  
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analysis of  the equations under consideration, for the further clarification 
of the complete integrability, though it is known that the Painlev6 test is 
not a necessary and sufficient condition for an equation to be completely 
integrable (Clarkson, 1987). But in this case of  the PKdV under consider- 
ation we deduce a Lax pair, which indicates the completely integrable 
character of  the perturbed KdV system. In our all the calculations the 
parameter  e is small. 

Next we examine the perturbed nonlinear Schr6dinger equation 
(PNLS). We first determined the perturbed set of  conservation laws. It is 
then observed that one can set up a recursion operator for these conservation 
laws and hence can set up a Lax pair a la  Chen and Liu. But when we 
perform a Painlev6 analysis for PNLS the results are not at all encouraging. 
In contrast to the case of  PKdV, the equations at the resonance positions 
yield a trivial result and the arbitrary wavefront gets fixed. 

2. LIE BACKLUND SYMMETRY OF PERTURBED KdV 

The perturbed KdV equation is written as 

u+ = Ua + 6UUle( alus  + a2uu3 + a3ul u2 + a4u2 ul)  (1) 

A Lie-Backlund transformation is of  the form (Fokas and Anderson, 1982) 

u ' = u +  e ~ ( u ,  u l ,  u 2 ,  u 3 , . . . )  
(2) 

x ' =  x; t ' =  t 

with e a small parameter.  To first order in e, the equation to be satisfied 
by ~ is (Fuchssteiner and Fokas, 1981) 

-tit = eal'qS + (ca2 u q- 1)-q3 + ea3ul'o2 q- ( ea3u2 + 6u 

+ ea4 u2) ~11 + (6ul  + eaEu 3 + 2ea4uul)r l  (3) 

All the derivatives (space and time) on ~7 are to be interpreted as 

7+ = ~u,Uit, ~x = 0x+Ui+I O~/OUi (4) 

Using (1) and all of  its derived consequences for ui,, we obtain, by equating 
coefficients of  u9 in (3), 

~aiusbli+l ~ 0 

implying 

"q = a u  + B (  u l  , . . . , u4) 

From the coefficients of u7, us, we get 

�9 l = a u s + 6 u 4 + u 3  a u + c  + E ( u 2 , . . . , u )  

(5) 

(6) 
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The coefficient of/,/6 imposes the condi t ion 

5al(~l,,,u2Ui+l + 2r/u,u3ui+2) = 4a2ul'qu4 q- r/us(10a2 + 5a3) u2 

from which we get 

r l a u 5 + b u 4 q - (  a2 ) ( ~  ) = U3 --au+c +u2 ba2u+aa3ul+d +F(UUl) (7) 
a l  a l  a 1 

Substituting this form of  ~ in the rest o f  the equat ions obtained f rom (3), 
we get (from the coefficient o f  us) 

( a 2 a )  (4ba2 +aa3 ) 
rl=ausWbu4q-u 3 uq-c q-U 2 U ulq-d 

\ al k 5al al 

2b u21(a3 u 1 
+ 5 a l  -2a2)+-5-~al (3a2cu+ 5aa4u2) 

+5ea~ UUl 1 0 -  + eu~ + G (8) 

The coefficient o f  u4 leads to 

b(4a2 + a 3 )  = 0 (9a) 

ce - (a3 - 2a2) = 0 (9b) 

2b (2~4 a~'~+u2(azd. 12b 6ba2\ 
G=-~u3 ~a 2] \5aa  5eal 2~ea21) +fu+g (9c) 

N o w  an impor tant  observat ion about  (8) is that  it contains a term o f  the 
order  l / e ,  but  if we think o f  e as smali and want  the symmetries o f  PKdV 
to go over smoothly  to those o f  KdV as e ~ 0, then this term must  vanish 
and we get a2 = 10a~. Equat ion  (9a) also impliex b -- 0. Also, the coefficients 
o f  u4 have the consequences  

ed(a3-2a2)+~aaa (aa2-aa)-4eb (2a4-~a~) =O 
(10) 

b 2 a 4 -  = 0; a2d-~ - -  0 
e 5ea~ 

From (9b) we get either a 3 = 2a2 -- 20al or a = cea~, but  we do not want  the 
leading coefficient to be o f  the order  o f  e, so we choose the first alternative. 
Lastly, f rom the coefficient o f  u2 we obtain 

3a2a3 3 
a 4 -  20al - 20a~ 20al �9 10al = 30al 
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So that we get a2 = 10a~, a 3 = 20al ,  and a4= 30a~ for the existence o f  
nontrivial (smooth funct ion of  e) symmetries o f  PKdV. 

It is interesting that the same values o f  these constants were obta ined 
by K o d a m a  from the condi t ion of  existence of  Hamil tonian  structure and 
Birkoffian t ransformation.  Once the constants are fixed, one can proceed 
for higher order  symmetries and obtain the recursion operator.  We do not  
follow this path,  but  try to analyze the singularity structure o f  the solution 
manifold  with the help o f  a Painlev6 analysis. 

3. PAINLEVI~ A P P R O A C H  TO PKdV 

For the Painlev6 analysis we set (Weiss et al., 1983; M. D. Kruskal,  
personal  communica t ion)  

u ( X t ) = E  '~+J 6., (x, t) 

where 4~(x, t ) =  0 defines the singularity manifold.  To obtain informat ion 
about  a, we set u -~ Uo4~ ~ in (1) and match the exponents  of  leading terms. 
There are several possibilities, gving rise to different branches o f  analysis. 

(i) When  u3 and 6uul match 

a = - 2 ;  Uo = - 2 0 2  

(ii) When  u3 and eal3OU2ul match 

a = - 1 ;  u 2= - - ( 1 / 5 e a l ) q ~  2 

(iii) When  6uul and ealu5 match 

a = - 4 ;  u0 = -ea1280~b 4 

(iv) When u5 and 10UU 3 o r  20UlU 2 match 

a = - 2 ;  

(v) When  us and 30u2ul match 

a = - 2 ;  

Uo = -3~b2 

u o = +2,,/3i~b~ (11) 

In the fol lowing we discard (ii) and (v) because (ii) gives a singular nature 
as e--> 0 and (v) leads to complex value o f  Uo, while all our  quantities are 
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real. I f  we now substitute 

UO= Z uj(Xlt)6~ t) 

in (1) and equate the coefficients o f  equal powers o f  ~b, then we get a 
recursion relation for uj (we write this out in the Appendix ,  due to its 
complex and elaborate nature).  In the sequel we refer to this equat ion as 
(A1). To fine the resonance posit ions we now set a = - 2  and Uo = K~b~, to 
calculate the coefficient o f  uj, which yields 

( j+l)[a1( j3-15j2+86j-240)+azK(j -4)2a3K]=O (12) 

For  j = 6 we get 

alk2 + 6K ( a3 + 2a2) + 360al = O 

or 

rk2 +6K(q+ 2p)+ 360=O 

where we have set r = a4/aa, q = a3/al, and p = a2/al. 
For a part icular  value o f  K, if we impose the condit ions that we will 

have resonances only at positive integral values o f  j, then p, q, r will be 
restricted. In  general there really exist many  possibilities. By a detailed 
analysis o f  equations (12) and (13) we see that  a possible parametr izat ion 
o f  (p, q, r) is 

r = 3 p ;  q = 3 0 - p ;  p = 9 5 + 1  (14) 

where S is a positive integer. For  example,  if we set S = 1, then p = 10, 
q = 20, r = 30, which is actually the set o f  values determined by our  symmetry  
analysis. 

Let us now proceed  to the actual determinat ion o f  the resonance 
positions. Consider  first the branch a = - 2 ,  u0 = -2~b~ for which coefficient 
o f  uj in (A1) leads to 

( j + l ) ( j - 2 ) ( j - 5 ) ( j - 6 ) ( j - 8 )  = 0  (15) 

so that the resonances  are at j = - 1 ,  2, 5, 6, 8. It is interesting to observe 
that this set is quite distinct f rom the set o f  resonances o f  the usual KdV 
equat ion ( - 1 ,  4, 6). Then,  f rom the recursion relation (A1) we can easily 
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obtain  

j = 0; u0 = -205 2 

j = 1 ; Ul = 2052 

j = 2; identically satisfied 

05~ 052053 05, u2x 
j = 3 ;  u 3 -  205~ ~ q~3 205 2 051 (15a) 

;,2 ( 50522~3 505205 4 
j = 4 ;  05, = 4q53 + 6051U 2 -- 2+ea, 05 2 05, 

+ ~ , - 3 0  05~u2+40~3u2+30051u~+ 10 05~ (15b) 

j = 5 ;  -405,05,, - 205205t = [P2xx - 3  05,P3x + Q4]x - P3053 - -  055Q, 
(16) 

where  we have used the nota t ion  in the Append ix  to write the equat ions 
in short  form. Using the explicit  forms obta ined  f rom the recursion relat ion 
(A1), we find 

(P2xx - 361P3x + Q4)x 

605 3 
-6~2053 -405105~+-- 

--24qS,052u2+ ea, [ 18q~2055+32053054--4051058 

   4_120U] 
(/31 [" 0 5 - " T  - -  5 0  051 

60u2 ~ - 60052053 Uz - 4005,054u2 - 12005,4,2u~ - P3052 - 05, Q5 + 

-2052053- 1205,052u2 + ea, (-12x053~b 4 

) 052053 
- 20052053u2- 10 q~--'--T- + 20 60qS,052xu 2 (17) 
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j = 6; 24,2, = P3xxx + Osx 

P3 = 2e.a14,4 + 20s 24,2 (18) 

Q5 = 6 Ul u2 + 30eal  ul u ~ - 10eal ulxUzx 

In writing equat ions  (16) - (18)  we have a l ready had recourse to the 
t runca t ion  

U = U0~/~--2-~ - U14, -1 -}- U 2 (18a) 

to shorten the structure. O f  course,  when  we set u3 = u4 = u5 . . . . .  0, 
equat ion  (15a) imposes  a restriction on 4, and u2, the consequences  of  
which will be  discussed in the following. 

A t j  = 7, we get an equat ion  involving only u3, u 4 , . . . ,  which have been 
all set to zero, so it is trivial. 

At j = 8, af ter  the t runcta t ion,  we get the equat ion 

u 2 , = u 2 , , = + 6 u 2 u 2 x + a l e ( u 2  . . . . .  +lOu2u2x,~,~+2Ou2u2x,,+3Ou2u2x) (19) 

So that  u2 is a solut ion of  the PKdV. 
Our  ma in  concern  is now to prove  the consis tency o f  the overde te rmined  

set ob ta ined  above  after  t runctat ion,  so that  (18a) can be in terpreted as a 
Backlund t r ans fo rmat ion  (BT). 

Let us start  with u3 = 0, or, f rom (15a), 

= (  ~D3 ~ 4,2~/~3 4,4 ) (20) 
U2x \ 24,3 4,~ 2-~1 

and  differentiate (15b) to' get 

01 t  = 4,4d-64,2U2 + ca1 " ( 404,34,3 54,24,5 54,34,4 {.. 4,6_~. 104,4U 2 
4,'1 4,1 4,1 

5 1 2 4,2\ ~0~ .42+15'%+~ 54,24,4 204,2~-~2,. 
-~-.a W,2 t/* 2 - - - - - ~ 1 2  -{- ) (21) 

N o w  construct  

-44,14,~,-24,24,,  

--4414, 4 -- 364,,4,2U2 + 6 4,32- 84,24,3 

[ 
170 ~ +  1 - -  4 0 4 , 1 4 , 4 U  2 + e a a  L 4,1 84,24,5 q- 204,34,4 -- 44,14,6 

5 2 
4,~ - 50 4,~44 -- 1804 ,14 ,2U2--  60  4,~ 4,1 

2 3 
- 100 4,34,----22 ' r,, 4,2u2 . . . . .  (22) 

4,1 ~-OLI 4,1 OU ~D2~D3/'/2 

which is nothing but  equa t ion  (16). So (15a), (15b), and  (16) are compat ib le .  
We now consider  equat ion  (18). By one integrat ion we obtain  f rom (18) 



but this integrand is 

~ 2  

24',, = P3,,x + Os 

or 

4,1, :- 4,4+64,2u2 + 8a1(4,6+ 104,4u2 -t- 104,3U2x + 104,2U2xxx + 304,2 u2) (23) 

Integrating again, 

( ) 4,, : 4 4,3 + 6 4, ' u2 - 4'~2 + ea , 4'5 +10 4'2 - 2 4" { 4)3 2~bb , ~ 

+ 3o4',//2 + 40//24'3 - 30 ~ ' 1  I/2 

54,34,31-44,24,2-t- 34,24,4 24,34,4~ d X  (24) 
4,~ 4,2 24,2 4,~ / 

Basak and Chowdhury 

0 ( 1 4,4_~ 3 4,24, 3 4,2~ 

= o x  -~4 ,~  2 4,2 4,,/ 

Rearranging and multiplying by 4,2, we arrive at [using equation (20)] 

4,1 (4'14't --44,14,, - 64'2u2 + 34' 2) 

= ea~(4'24'5 - 54'24'3 - 54'14,24,4-1-104,14, 2 

3 2 2 2 + 304' lu2 + 404,, U 2 4 , 3  - -  304,a4'2u2) 

which is nothing but equation (15b) in different form. 

(25) 

Lax pair 

For the derivation of the Lax pair, we start from equations (20) and 
(15b). If we define the Schwarzian derivative, 

O_( q 1( 4 
Ox \ 4 ' , / - 2  \ 4",/ 

then (15b) can be written as 

4,, 
os, - - - { 4 ' l . x } + 6 A  = ea, [{4',X}xx+ 2U2{4'2x}+~ {4 'x}2-8A{4 ' ,x}+ 30A z] 

(27) 
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As pointed out by Weiss, this form immediately suggests that this equation 
can be written as a linear equation. Indeed, if we set 4~ = V 2 in (15b), then 

V~ = (2u20,~ + U2x - 4 h 0 x )  V +  eal(32A 20x -8u2Aax  

- lOu20x -4AU2x - U 2 x x )  V+ eaa(-22u2U2x + 2U2xOx) V (28) 

Now, if in equation (20) we set ~bl = V 2, then 

3 3 u2x = -42/2~b,  + q~z~b3/4 2 - q~4/2q~l (29) 

can be written as 

U2x = - - ( V 3 / V -  W2Wl/V 2)  

which can be integrated once 

u2 = - V2/ V + ;~ 

o r  

o r  

(30) 

( u 2 - a ) V =  V2 

o 2 v 2 / o x  2 = ( u 2 -  ;t) v (32) 

which is nothing but the Schr6dinger equation (x part of  the Lax pair). 

4. O T H E R  BRANCHES OF THE PAINLEVI~ ANALYSIS 

As observed previously, for a = - 2  we also have another situation, for 
which Uo =-6~b~. In that case K = - 6  and the equation governing the 
positions of  the resonances is 

( j +  1)(j  - 6 ) ( j  3 - 15j2 + 26j + 240) = 0 (33) 

yielding resonances at 

j = -3 ,  - 1 ,  6, 8, 10 (34) 

Once again j = - 1  corresponds to the arbitrariness of  ~b (x, t), but j = - 3  is 
of  no use. Thus, the number  of arbitrary functions that can enter the 
expansion is one less than the number  of  resonances, in contradiction to 
the requirement of  the Cauchy-Kawalevska  theorem. Similarly, for the 
branch a = -4 ,  Uo = -ale280~b 4 we get a resonance a t j  = -1 .  Thus all other 
branches that can occur do not possess the Painlev6 property, but for the 
branch Uo =-2~b  2, a = - 2  the equation is completely integrable, since it is 
possible to deduce the Lax pair explicitly. 

(h a constant) (31) 
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5. PAINLEVI~ TEST FOR PERTURBED NLS EQUATION 

The equat ion under  considerat ion is written 

q, = +iq~x + 2iq2 q + ( al q~x + a3q2q*x ) 
(35) 

q* = - i q *  - 2iq2q * + e ( a,q*x + a3q*2 qx) 

If  we proceed  as before by finding the leading exponent  to be - 1 ,  we 
substitute 

co 

qj = ~ Uj05j-1; q* = y~ Vj& j-I  (36) 
j = O  j = O  

Equating coefficients of  the same power  of  05, we are led to recursion 
relations, 

uj-  3t + ( j - 3 ) u j - 2 ,  

= j ( j -  2 ) ( j -  3 )052uj_l 

+ j ( j  - 3) [ 205xuj-2,x + 05xxu;-2 + iuj-3xx 

+ Y • {2iumunVj . . . . .  l}+ eal[( j-  1 ) ( j - 2 ) ( j -  3)0531uj 
m n 

+ ( j  - 2) ( j  - 3)(3 Uj-lx052 + 3 uj- 105:,05xx) + ( j  - 3)(3 uj-2xx05xx 

+ 3 uj-2xGx + uk-2G~x) + uj_~x~] 

+Ea3105x~m~n1"lmUnVj . . . .  (J-m-n-1)+~UmUnXVJm n . . . . .  1 ,x l l  

(37) 

Vj 3 , , + ( j - 3 ) V j  205, 

= - i ( j - 2 ) ( j - 3 ) 0 5 2  Vj 1-j(j'3)(205xVj_2x+05~xVj_2) 

- iVj_3~x-2iEE VmVnUj-m-n-1 
m n 

+ ea~[(j - 1)(j - 2 ) ( j  - 3)05 3 Vj + ( j  - 2 ) ( j  - 3)(305 2 Vj_~x + 3 05~05x~ Vj-~) 

+(j-3)(3Vj_2xx05~+3Vj-2~05~x+ V;-205~) + Vj-3x~/] 

+ea3105X~ ~ VmV.uj . . . .  ( j - m - n - 1 ) + ~  VmV~uj ~_~_lx I (38) 

Setting j = 0, we get 

Uo Vo = - (  6al/ a3) 05 2 (39) 
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Taking  coefficients o f  uj and Vj, 

eal[( j  - 1)( j  - 2 ) ( j  - 3)~b3] uj + ca3[ ck~,u~ V i ( j  - 1) - 2Uo VoCb:,uj] 

= terms containing ~ ,  Vj lower order  (40) 

ea~[(j - 1)(j  - 2 ) ( j  - 3)~b 3 Vj + ea3[O,,V~u~(j - 1) - 2Uo Vo &x Vj ] 

= terms conta ining uj, Vj lower order  (41) 

so that  we have the system matr ix  (Golds te in  and Infeld,  1984) 

T =  { a , ( j - 1 ) ( j -  2 ) ( j -  3 ) b  ~ - 2a3uo Vobx, a3c~xu2(j - 1 )  ~ 

\ a3Ox V~(j - 1), ax ( j  - 1)(j  - 2 ) ( j  -3 ) (h~  - 2a3uo Voc~x] 

I f  we use (39) for  uoVo, then det T = 0  leads to 

j ( j  + 1)( j  - 3 ) ( j -  4 ) ( j  2 -  6j + 17) = 0 (42) 

so that  we have resonances  at j = 0, - 1 ,  3, 4, but  those f rom the last factor  
are not  integral. For  j - -  1 in the recursion relat ion,  

2ieb2 Uo ( 1 - 6 a ' ]  +6eal(o,:(UoxC~xUoeb:,,:) 
\ a3 / 

2 
+ ea3(Uo Vox - 2~bxUo Voul) = 0 (43) 

-2idp2~ Vo ( 1 - 6 a l l  +6ealcbx( Vo~d~x + Voehxx) 
a3 / 

+ ca3( 2 Vouo,, - 24~xUo Vo V~) = 0 (44) 

Mult iplying (43) by Uo and (44) by Vo, if  we add  and subtract,  then we get 

Vo (1  _ 6 a , )  +6eal~b~(uoxVo- Uo Vo,,)+ea3 VouoX 4iCb 2xUo 
\ a3 / 

[ - ( u o x V o -  Voxuo)+ 2~bx(uoV,- Vou,] = 0 (45) 

Since e is small,  we d e m a n d  1 - 6 a l / a 3 = O  , so that  equat ion ( ) is 
writ ten as 

UoV1+ Voul = 4~xx (46) 

and we also get 

Vl Uo - VoUl = ( Uo,, Vo - Voxuo) / ebx (47) 
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along with 

uoVo = -q~2x (48) 

Putting j = 2 in the recurs ion relations,  we obtain  

- uo~b, = - i(2uo~bx + uo~bx~) +2iu~V1 +4iuoVoul 

+ eal[-(3UoxxCb,~ + 3 Uo~b~x + Uo~bx~)] 

2 2 
+ 8a3((OxuoV2 - q~xUl Vo+ U2Vlx -~- 2UoUl Vo,~) - Voda, 

= i(2 Vox~bx + VoqS.=)-2iV~u1-4iuoVoV1 

+ e a l [ - ( 2  Vox~4~ + 3 Vox~bx~ + V o 4 ~ ) ]  

+ ea3((axV2ou2- (axV2uo + V~Ulx + 2 VoVlUo~) (49) 

Now,  since we want  to t runcate  the expans ions  at constant  level, we set uj, 
Vj = 0, j ~ 2. This yields, f rom (47) and (49), 

uo~Vo- Uo Vo~ = ~ (50) 

2~b,/ 4~,, = ea1(24'1 - 4'2..] 3~ 2) (51) 

where 

4' = 6xx/6x;  UlVl= J(;~2- 4' 2 ) (s2) 

N o w  for  j = 3 (after the t runcat ion  is taken into account)  we get 

�9 �9 2 
Uot = tUox~ + 2tul Vo + 4iuoul V1 + eal Uox~x 

(53) 
Vo, = -iVo~x - 2 iV2uo-4 iVo  Vlul + eal Voxx~ 

f rom which it is easy to deduce  

2cbi, l ~b (x) = 6a  1(262 - -  4'3 _~_ 3/~ 2 4 ' )  (54) 

It  is now interesting to observe  that  equat ion (54) is nothing but  the derivat ive 
of  ( ); that  is, 

o 
- ~ a l  24,1-4,  + : a  2 ~ 0 

Ox 

so that  they are compat ib le .  Now,  by subtract ing upon  mul t ip l ica t ion by 
Vo and uo, we can deduce  f rom (53) and (50) 

= i  4 ' 2 - 2 4 '  1 -  A 2 +ealA 2 4 ' z - 4 4 ' , + ~  -- (55) 
cheat 
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A similar consideration at j = 4 leads to 

io~ ( V , u , x  - u, V,x) + ~<[ ( u, VOxxx - 3( u,x Vlx)x] (u ,  V1), 

+ 6eal(u 1 VOxul Vl 
(56) 

20 ( u--~) = i[(ul VOxx_2ulxV, x]+4i(ul V02 V10t 

+ ca1( V1 ulxxx - ul Vlxxx) -6ealu l  VI( Vlu,x - ul Vlx) 

Putting the values of u~ V~, etc., we get 

3A 2 
4',=ih k 4' I{4~x}x+ 611 + e a ' a j  {~ + O{tbx}x ---  7 -  

1 21 

For compatibility with (52) we should have 

a x+ + G =0, ,~{4,xL=0 (58) 

{&, x} being the Schwarzian derivative 

{~'x}=0x < -7\61I 
In the above computation A is a constant of integration, which also 

can be a function of time. It is easily observed that even then equations 
(50)-(52) and (54) remain unchanged, except that we now write A (t) instead 
of A. We have an extra equation 

4 ' ~ ,  - -  /~a  t = - - i X  ( 4 ' 2  - -  4 '4 '1 )  -~- E a 1 ( 4 ' 0 3  - -  3/~ 24 '2  

q-43A204'1 q- 3A 2~l/tl - -  3 1 1 / 3 ~ J 1 )  (59) 

From equation ( ) it again follows that h2{4~x}~ =0,  so either h = 0  or 
{6xL = o. 

If we set A = O, then we deduce 

i( 02 - 24',) = -(i/4')(24'2 - 4 ' 3 )  

immediately leading to 4'2-4'4'1 = 0, which is nothing but {&x}x = 0, again 
fixing ~b. Thus we conclude that the perturbed NLS equation does not pass 
the Painlev4 test, in contrast to the perturbed KdV equation. We now show 
that though our equation (PNLS equation) does not conform to the Painlev6 
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criterion, yet it is possible to deduce its conservation laws and the corre- 
sponding Lax pair via the approach of Chen and Liu. 

The Converservation Laws and Lax Pair 

Let us now linearize equation (35) by setting q ~ q + e~b, q* ~ q* + e0; 
we then get 

with M given as 

{-iO 2-4ilq12+ e( a,a 3- a32qq*), 2iq* + ea3q*02] 
M= \ _2iq2 + ea3q20 ' i02 + 4ilqr + e( a,O3_ 2a3q, q) /I (60) 

We now substitute (Iino et al., 1982) 

(a=exp(kx +wt+ f ~  Tdx) 

O=Aexp(kx+wt+ f ~  Tdx) 
(61) 

and ensure that A, T are analytic functions of  k to be expanded as 

C~3 cO 

T= Z k-"T.; A= 2 k-"A. (62) 
n = 0  n = O  

Equations obtained for An, T. after we substitute (61) in equation (60) can 
be solved recursively for the coefficients Tn and A.. Let us assume that 
each Tn, An have perturbed and nonperturbed contributions written as 
T. = T o + eT~ and A. = A ~ + eA~.. We then get the results shown in Table I. 

Now, as per the ansatz of  Chen and Liu, we consider M to be the time 
part of the Lax pair. For the space part we observe that these T ~ can lead 
to solution sets of ( ) by 6T./~q, 3T./6q*, which can be recursively 
generated through an operator L of the form 

-a+ d = Lo+ L1 (63) 

We now impose the condition that L, = [A, L] holds up to first order in e, 
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Table I 
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T O A o 

n=0 0 0 
n = 1 -2qq* 0 
n = 2 2q.qx q2 

n = 3 -2q*q~x -2(qq*) 2 - -  

TIM a~ 

n = 0 3 i a l q q *  0 

n = 1 3 a l ( q * q  - q * q x )  + ia3qq*x �89 2 
n = 2 _3a~[qxq. _ q . q .  _ (qq.)2] 

+ 3ial( qq*) z (3al - a3)qqx 
+ ial(q~xq* - qxq*~ + qq~x) 

which then leads to the fol lowing equations for the coefficients (a, b, c, d) :  

atq~ = ( iaO a -  ioZ a )~O + e(  alO3 a - a l a O 3 ) t M ( m o - o m ) ~  

Gtp = i ( 02 c + c02)tp + ea l (  03 c - C03) ~t -~- ( N*O*  + O N * )  ~ 
(64) 

btqJ* = - i ( 0 2 b  + bo2)~b * + eal(O3b - bO3)~b * - ( N O  + ON) t~*  

dab* = i(02 d - dO2)t~ * + eal(O3 d - d03)tb * + ( o m *  - m * o ) t p *  

For the actual solution we again assume that  a = a ~  1, b = b ~  ~, 

c = c~  ee 1, etc., and regard q, q* as small quantities; so we use, as in the 
mode  coupl ing approximat ion ,  

q = ~ elX+il2tql , qJ = ekX-ik2tt~k (65) 

Then if we Fourier  decompose  the coefficients a ~ a 1, etc, as 

a ~ = Y~ aOm e x p [ ( l +  r e ) x +  i ( 1 2 -  rn2) t] (66) 
lm 

we obtain 

a ~  (l+m+k-~-]--~/ 

a ~ m = - i a ~ q ~ q *  l + l - i - - ~ ]  l + 2 k + 2 m +  l + k  + 2 a 3 q l q *  

l + m + 2 k  
b ~ = - q ' q *  

( l + k ) ( k + m )  
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1 ialbOm l + m  (12+m2+21m+31k+3mk+3k2) 
b],,,= -~  ( l+k)(m+k)  

(67) 
+ t a 3 k ( 1  + 1 ) 

2 l+k m+k q'q* 

( 
c~ qtmm\l+k m+k] 

all o (l+m) (12+mZ+21m+31k+3mk+3k2) c1,, = --2-Cmt(l+k)(m+k) 

+ ia3 ( 1 1 ) 
-'~-qlqmk l + k + m + k  

Similar results can also be deduced for d ~ d 1. It is interesting to note that 
though we deduced the values by assuming the Fourier decomposition, it 
is independent of it, since the last expressions can be interpreted as operators 
on the fields q, q,, etc. As an example, we easily observe that 

(m + k) 2 - mk 
al(1 + k) + (m + k) -~ ~bkqlq* (68) 

l + k  

is nothing but 

al[q* Ox(qtp) + q Ox(q*tp) + q*xD-'(Oq) + q*xD-'(Oxq) + q*D-~(qOxx)] 
(69) 

So if we assume that this holds for all, then dropping O, we can write the 
operator expression 

al[q* Ox(q) + q Ox(q*)q*xD-'(q) + q*D l(q Ox) + q*D-'(q 0xx)] (70) 

Similar considerations hold for the other coefficients. Thus although the 
peturbed NLS equation does not pass the Painlev6 analysis, it is possible 
to find a Lax pair via the Chen-Liu approach. 

6. DISCUSSION 

In the above analysis we have considered the questions of complete 
integrability and existence of an infinite number of symmetry conservation 
laws of perturbed KdV and perturbed NLS systems. The arbitrary constants 
occurring in the perturbing term could be fixed by demanding the smooth 
behavior of Lie-Backlund symmetry with respect to the perturbation par- 
ameter. It is interesting to note that the same set of values arises when we 
apply Painlev6 analysis to PKdV. Though various branches exist, only one 
branch has the full Painlev6 behavior, where we prove the consistency of 
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the overdetermined set of  equations. We then show that it is possible to 
deduce the Lax pair from these Painlev6 equations. Lastly, it is important 
to note that the set of  resonances in our PKdV is different from those of 
the ordinary KdV equation, yet our equation ( ) goes smoothly to those 
of Weiss et al. as e ~ 0. The same approach,  when applied to the case of  
the perturbed NLS equation, yields that this perturbed system does not 
conform to the Painlev4 criterion at all. But it is really surprising to observe 
that one can find a Lax pair for the perturbed NLS system through the use 
of  many conservation laws and their recurrence relation following the 
approach of Chen and Liu. Perhaps this another example that Painlev6 
analysis is not a necessary and sufficient condition for the test of  complete 
integrability of  nonlinear systems. In the Appendix we give another example 
of  a Hamiltonian KdV system that is still believed to be completely 
integrable, has infinite symmetry recursion operator and Hamiltonian struc- 
ture, but does not pass the Painlev6 test. 

A P P E N D I X  

We discuss a new nonlinear pde known as the "Hamil tonian KdV" 
system discussed by Olver (1987), which was deduced from the basic 
equations of  hydrodynamics by a modified perturbation theory respecting 
the symplectic structure at every order. The equation under consideration 
reads (Olver, 1987) 

3 +/36 ~ 6  ~ 2 15 Ut + Ux +'~ aU~l x Uxxx+ (u  ) x , , x + ~ ~ a Z u Z u x = O  (A1) 

Proceeding as before, we find the leading exponent to be -2 .  So we set 
u = Y~=0 ufl /-2 in (A1), leading to the recursion relation, 

( j - 6 ) u j _ 4 c h ,  + uj s,, + ( j - 6 ) u j _ 4 ( O x  + Uj_3,, 

+ 3a[UmUj_~_2( j  - m - 4) 4~ + u , .u j -m-3x]  

+ ~/3 [ ( j  = 4)( j  - 5)(j  - 6) uj_2~b ~ + ( j  - 5)( j  - 6) (3 uj_3~b~ + 3 uj-3 ~ 4 ~ )  

+ (j  - 6)(3,~uj_,~ + 3 ~x~uj_.~ + uj_~,~.)  + u j _ ~ ]  

+ ~ a f l { ( j  - 4)(j  - 5)( j  - 6)u,.uj_,.qb 3 + ( j  - 5)(j  - 6) [3 ~b 2(u,.uj_~_,)x 

+ 3(a,,Cb,,xUmUj--m_,] + ( j  -- 6)[3Chx(UmUj--.,--2):,x + 3@.x(U,.Uj-m--2)x 

+ 4~(UmUj-m 9]+(UmUj-,.-~)~x} 

+ ( 1 5 / 3 2 ) a 2 [ u , . u . u j  . . . .  ( j  - m - n - 2)~b~ + u , . u . u j  . . . .  l .]  (A2) 
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From this it is easy to obtain 

8~ 4, 8/3 Uo = 2; Ul = -  ~b~ (A3) 
of of 

The coefficient of  uj in (A2)  yields  resonances  a t j  = - 1 ,  6, 10. Furthermore,  

: k ( ~ 2 _ 1 7  3 11 [//l~l ) (A4) 
u3 ~b~\3 21q~ - 7  - 

U2 : -- k ( 1]/1 -~ I~t2 q- 5 - - - ~  (A5)  
\ 3 12 3ofk] 

where ~b = q52/~b I . But if, fo l lowing  Weiss,  we  want  to truncate the expans ion  
at the constant  level  by setting ui = 0, i-> 3, then it is seen that one  need 
not  proceed up to r = 6 or 10, and we  get a negative result. 
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