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We consider the Lie-Backlund symmetries and conservation laws of a perturbed
KdV equation and NLS equation. The arbitrary coefficients of the perturbing
terms can be related to the condition of existence of nontrivial LB symmetry
generator. When the perturbed KdV equation is subjected to Painlevé analysis
a la Weiss, it is found that the resonance position changes compared to the
unperturbed one. We prove the compatibility of the overdetermined set of
equations obtained at the different stages of recursion relations, at least for one
branch. All other branches are also indicated and difficulties associated them
are discussed considering the perturbation parameter ¢ to be small. We determine
the Lax pair for the aforesaid branch through the use of Schwarzian derivative.
For the perturbed NLS equation we determine the conservation laws following
the approach of Chen and Liu. From the recurrence of these conservation laws
a Lax pair is constructed. But the Painlevé analysis does not produce a positive
answer for the perturbed NLS equation. So here we have two contrasting
examples of perturbed nonlinear equations: one passes the Painlevé test and its
Lax pair can be found from the analysis itself, but the other equation does not
meet the criterion of the Painlevé test, though its Lax pair is found in another way.

1. INTRODUCTION

The existence of an infinite number of Lie-Backlund symmetries for
partial differential equations that possess a Lax pair is now a proven fact.
On the other hand, some perturbed nonlinear equations are also integrable
in the sense that they do have a Lax pair up to first order in the perturbation
parameter (Kodama, 1985). Here we consider the perturbed KdV and NLS
equation.

First we consider the PKdV equation. We see that the different constants
occurring in the perturbing term is related to the existence of nontrivial LB
symmetries. Encouraged by such an analysis, we then make a Painlevé
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analysis of the equations under consideration, for the further clarification
of the complete integrability, though it is known that the Painlevé test is
not a necessary and sufficient condition for an equation to be completely
integrable (Clarkson, 1987). But in this case of the PKdV under consider-
ation we deduce a Lax pair, which indicates the completely integrable
character of the perturbed KdV system. In our all the calculations the
parameter ¢ is small.

Next we examine the perturbed nonlinear Schrodinger equation
(PNLS). We first determined the perturbed set of conservation laws, It is
then observed that one can set up a recursion operator for these conservation
laws and hence can set up a Lax pair a la Chen and Liu. But when we
perform a Painlevé analysis for PNLS the results are not at all encouraging.
In contrast to the case of PKdV, the equations at the resonance positions
yield a trivial result and the arbitrary wavefront gets fixed.

2. LIE BACKLUND SYMMETRY OF PERTURBED KdV
The perturbed KdV equation is written as
U, = Uz +6uu, e (a,us+ a,uus + asu us + a,u’u,) (D
A Lie-Backlund transformation is of the form (Fokas and Anderson, 1982)
w=u+en(u,u,u,, Us,...)
, ) (2)
X =X, =t

with & a small parameter. To first order in ¢, the equation to be satisfied
by n is (Fuchssteiner and Fokas, 1981)

n, = ea s+ (eau+ 1)+ gazu; nm, + (eazu, +6u
+ ea,u’)n, + (6u; + gaus +2eauu,)n (3)
All the derivatives (space and time) on 75 are to be interpreted as
N+ = Ny Uiz, N = Oyt Uit 317/6“.' (4)
Using (1) and all of its derived consequences for u;,, we obtain, by equating
coefficients of ug in (3),
NagsUivr =0
implying
n=au+Blu,,. .., u) (8)

From the coeflicients of u;, ug, we get

2

a
n=au5+6u4+u3(a—au+c)+E(u2,...,u) (6)
1
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The coefficient of u, imposes the condition
Sal(nu,-uzui+l + 277u,-u3ui+z) =dauym,,+ ’f)us(loaz +5a3)u,
from which we get

4 a
n=aus+bus+u, (_a_2 au+c> + u, <~bﬂ u+& u1+d) + F(uuy) (7)
a, 5 a a,

Substituting this form of 7 in the rest of the equations obtained from (3),

we get (from the coefficient of us)

a,a
n=aus+ buy+ u, (———u+c>+u2( 5 u+—=u,+d

4ba, aa;
a a; 431

2b
+—ui(a;—2a,) +L (Baycu +5aa,u®)
S5a, 5a,

3a
+
S5ea,

uu, (10~%> +eu, +G (8)

a;
The coefficient of u, leads to

b(4a,+a3)=0 (9a)

(ce——a—> (a;—2a,)=0 (9b)
a

1

2b  (2a, a} ) ) (azd 12b  6ba, )
= () 2 (P 2 9
G=1s ”3( 0, 5a2) T¥ \5a, T5ea, 250a3) THTE (9O

Now an important observation about (8) is that it contains a term of the
order 1/¢, but if we think of ¢ as smali and want the symmetries of PKdV
to go over smoothly to those of KdV as ¢+ 0, then this term must vanish
and we get a, = 10a,. Equation (9a) also impliex b = 0. Also, the coefficients
of u, have the consequences

6b z
ed(ay,—2a,)+— (3a,—a;)—4eb (2a4——az—) =0
5a, 5a,

(10)

a2
b <2a4—5—2) =0, ad +

a,

EJ__6ba2 —0

£ 58[11

From (9b) we get either a; =2a, =20a, or a = cea,, but we do not want the
leading coefficient to be of the order of ¢, so we choose the first alternative.
Lastly, from the coefficient of u, we obtain

3a,a, 3
=225 204,104, =30
20a, 20a, VTN

a,
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So that we get a,=10a,, a;=20a,, and a,=30a, for the existence of
nontrivial (smooth function of ¢) symmetries of PKdV.

It is interesting that the same values of these constants were obtained
by Kodama from the condition of existence of Hamiltonian structure and
Birkoffian transformation. Once the constants are fixed, one can proceed
for higher order symmetries and obtain the recursion operator. We do not
follow this path, but try to analyze the singularity structure of the solution
manifold with the help of a Painlevé analysis.

3. PAINLEVE APPROACH TO PKdV

For the Painlevé analysis we set (Weiss et al, 1983; M. D. Kruskal,
personal communication)

u(X1)=¥ ¢%7(x, 1)
where ¢(x, t) =0 defines the singularity manifold. To obtain information
about a, we set u = uy¢” in (1) and match the exponents of leading terms.
There are several possibilities, gving rise to different branches of analysis.
(i) When u; and 6uu; match
a=-2; uy=—2¢3
(ii) When u; and ea,30u’u, match
a=-1; up=—(1/58a,)$3
(iii) When 6uu, and ea,us match
a=—4; Uy=—£a,280¢7
(iv) When us and 10uu; or 20u,u, match
a=-2; Uo= -3¢}
(v) When us and 30u”u; match
a=-2; Uy=£2v3i¢p] (11)

In the following we discard (ii) and (v) because (ii) gives a singular nature
as £ >0 and (v) leads to complex value of u,, while all our quantities are
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real. If we now substitute

Up=), uj(Xlt)¢a+j(x, t)

in (1) and equate the coefficients of equal powers of ¢, then we get a
recursion relation for u; (we write this out in the Appendix, due to its
complex and elaborate nature). In the sequel we refer to this equation as
(A1). To fine the resonance positions we now set a = —2 and u,= K¢3, to
calculate the coefficient of u;, which yields

G+ Dla(j*—157°+86j —240)+ a,K (j—4)2a,K]=0 (12)
For j =6 we get

a,k*+6K(a;+2a,)+360a,=0
or

rk>+6K(g+2p)+360=0

where we have set r=a,/a,, q=as/a,, and p=a,/a,.

For a particular value of K, if we impose the conditions that we will
have resonances only at positive integral values of j, then p, g, r will be
restricted. In general there really exist many possibilities. By a detailed
analysis of equations (12) and (13) we see that a possible parametrization
of (p,q,r)is

r=3p; qg=30-p; p=95+1 (14)

where S is a positive integer. For example, if we set S=1, then p=10,
g =20, r =30, which is actually the set of values determined by our symmetry
analysis.

Let us now proceed to the actual determination of the resonance
positions. Consider first the branch a = —2, uy= —2¢2 for which coefficient
of u; in (Al) leads to

G+DG=2( -5 -6)(j—-8)=0 (15)

so that the resonances are at j=—1, 2, 5, 6, 8. It is interesting to observe
that this set is quite distinct from the set of resonances of the usual KdV
equation (—1, 4, 6). Then, from the recursion relation (Al) we can easily
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obtain
i=0; Uy=—2¢3

=1 U =2¢;
j=2; identically satisfied

¢% b5 by Uy,

JEX st i Ty (15a)
343 542 5
R =
2 2
+¢s—30 ¢;u2+40¢3u2+30¢1u§+10%) (15b)
1 1

Jj=35; —4d by — 20,0, = [P2xx =3¢, P35, + Qul, — P33 — s Q4
(16)

where we have used the notation in the Appendix to write the equations
in short form. Using the explicit forms obtained from the recursion relation
(A1), we find

(P2xx —3¢1P3x+ Q4)x

643

“6¢2¢3 _4¢’1¢4+ ¢1

—24¢y¢pruy+ ea, [ 18¢p2p5+ 32304~ 415

606> $30s . P, 4)24)5]
- + 180 —50 -120
o b1 é, é,

3

+60uz%—60¢z¢3u2—40¢1¢4u2—120¢1¢2u§~1>3¢2—¢105

1

—2¢2¢3—12¢,pruy+ ea, (“123“]534)4

bsh3 20 $203

_20¢2¢3u2—10 ¢% ¢1

_60(751(1)2)‘“%) (17)
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j=6; 2¢h20 = Py + Qsye
P,=2¢ea,¢,+20ca,dpu,+2¢, (18)
Qs=6u,u,+30ea,u,u3—10ea,u; u,,
In writing equations (16)-(18) we have already had recourse to the
truncation
u=ugp  +tu i tu, (18a)
to shorten the structure. Of course, when we set u;=u,=us=---=0,
equation (15a) imposes a restriction on ¢ and u,, the consequences of
which will be discussed in the following.
At j =7, we get an equation involving only u;, u,, ..., which have been
all set to zero, so it is trivial.
At j =8, after the trunctation, we get the equation
Uy, = u2xxx -+ 6u2u2x + als(ulxxxxx + 10u2u2xxx + 20u2u2xx + 30“%“23() (19)
So that u, is a solution of the PKdV.
Our main concern is now to prove the consistency of the overdetermined
set obtained above after trunctation, so that (18a) can be interpreted as a
Backlund transformation (BT).
Let us start with u, =0, or, from (15a),

b3 | batbs ¢4>
U =| ——S5+—F—— 20

’ ( 267 7 2¢ 20
and differentiate (15b) to get

3
b1, = Pa+6druy+ eay ( _40¢§¢3_5¢2¢5_5¢3¢4+ b6+ 10d,u,
o1 &, ol
15¢3  15¢35¢, d)s)
+30¢,¢3+ +—5=420 21
b2 5 pe ¢2¢1 (21)

Now construct

_'4¢1¢1t —2¢2¢t
3
~4¢y¢,—36¢, ¢2u2+6(5) — 83

+ea, [170 ¢;¢3+18¢2¢5+20¢3¢4 416~ 400, u,

1
—180¢, ¢, u3— 60912—50 ¢

b1 ¢

#3602 504,050, 22)

1 1

which is nothing but equation (16). So (15a), (15b), and (16) are compatible.
We now consider equation (18). By one integration we obtain from (18)

—100 ——=
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2¢1.= P + Qs
or
1= Pst6houy+ £a1 (P + 100U, + 103us, + 1051 0 + 30(}"2”%) (23)
Integrating again,

33 3

2
+30¢,u3+40u,¢; — 30 % U,

1

5 3 2 2
10 J (g $3_Sda¢s 44203 +3¢2¢4_2¢3¢4) X

201 1 61 201 &
but this integrand is

=g< 1¢3+§¢§¢3_g§>

ax\ 2¢1 2 ¢7 &
Rearranging and multiplying by ¢3, we arrive at [using equation (20)]
61(D10— 46103~ 6411, +33)
= ea,(P1ps— 533~ 51204+ 100,63
+30¢3u5+40¢ us; — 30, d3us) (25)

which is nothing but equation (15b) in different form.

Lax pair

For the derivation of the Lax pair, we start from equations (20) and
(15b). If we define the Schwarzian derivative,

_3 (&) _1(¢:Y
i, x) —é)x (¢1> 2 (d)l) (26)
then (15b) can be written as

%_{¢l,x}+6A =¢ea, [{05, x}xx+2u2{¢2x}+% {¢x}*—8A{a, X}+30)\2]
(27)
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As pointed out by Weiss, this form immediately suggests that this equation
can be written as a linear equation. Indeed, if we set ¢ = V> in (15b), then

V, = (Quydy + sy —4A3,) V+£a,(3219% ~ 8uyA 0,
—10U30, — dAlsy — Uy ) V + £a,(—22u515, + 215,3,) V (28)

Now, if in equation (20) we set ¢, = V>, then

U = =43/ 207+ $2p3/ b1~ b/ 20 (29)
can be written as
Uy, =—(Vo/ V=V, V}/ V?) (30)
which can be integrated once
u,==V,/V+A (A a constant) (31)
or
(u,—A) V=1V,
or
*Vo/ax*=(u,—A)V (32)

which is nothing but the Schrédinger equation (x part of the Lax pair).

4. OTHER BRANCHES OF THE PAINLEVE ANALYSIS

As observed previously, for a = —2 we also have another situation, for
which u,=—6¢3. In that case K =—6 and the equation governing the
positions of the resonances is

(j+1)(j—6)(j*—15/°+26j +240) =0 (33)
yielding resonances at
j=-3,-1,6,8,10 (34)

Once again j = —1 corresponds to the arbitrariness of ¢(x, t), but j=-3 is
of no use. Thus, the number of arbitrary functions that can enter the
expansion is one less than the number of resonances, in contradiction to
the requirement of the Cauchy-Kawalevska theorem. Similarly, for the
branch o = —4, u,=—a,£280¢7 we get a resonance at j = —1. Thus all other
branches that can occur do not possess the Painlevé property, but for the
branch u,= —2¢], @ = —2 the equation is completely integrable, since it is
possible to deduce the Lax pair explicitly.
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5. PAINLEVE TEST FOR PERTURBED NLS EQUATION
The equation under consideration is written
Gr = +ige +2ig°q + (81 + a34° %)
qF = —igh —2ig’q* + e(a, g%+ 0:0%7qx) )
If we proceed as before by finding the leading exponent to be —1, we
substitute

Vie'™! (36)

18

q = ) ujd’j_l; qj* =
j=0

j=0

Equating coefficients of the same power of ¢, we are led to recursion
relations,

=j(j—2)(j_—3)¢iuj-—l

+J(.] - 3) |:2¢xuj—2,x + ¢xxuj—2 + iuj—3xx
+Z Z {Ziumun‘/j—m—n-1}+ sal[(j - 1)(] _2)(] _—3)¢%u]

+(j—2)(J _3)(3uj—1x¢§+3uj~l¢x¢xx) +(Jj _3)(3“j—2xx¢xx

+ 3uj—2x¢)xx + uk‘2¢’xxx) + uj—3xxx]

teas |:¢x Z Z umun‘/j—m—n(-[_ m-—n-— 1) +Z Z umun-x‘/j—m~n~1,xi|]

(37)
Vj—3,r + (J - 3) Vj—2¢z

= _1(1_2)(]_3)(#3: v;'fl —J(J_3)(2¢x‘1172x+ qux‘/j*2)
- i‘/j73xx —2i Z Z VmVnuj*m—n—l
+ Eal[(j— 1)(]_2)(]_3)(#?6‘/;4-(.]_2)(} —3)(3¢i‘/j—1x+3¢x¢xx‘{l"l)
+ (.] —-3)(3 ‘/j—Zxx(ﬁx +3 ‘/j‘fod)xx + ‘/j~2¢xxx) + ‘/j—3xxx]

+ea; [d’x Z Z Vm Vnuj-—m—n(j -—m-n-— 1) +Z Z VmVnujm—n—lx] (38)

Setting j =0, we get
Uy Vo= _(601/513)(15;2( : (39)



Symmetry of Perturbed Nonlinear Equations 505

Taking coefficients of u; and V,,

ea,[(j— 1)(j‘2)(j_3)¢:3r]“j + 8a3[¢xu(2)vj(j —1)—2u, V0¢xuj]

=terms containing U;, V, lower order (40)
ea)[(J—1D(—2)(j—3)d3V; + eas[ . Vou; (j — 1) — 2u Vo, V]
=terms containing u;, V; lower order (41)

so that we have the system matrix (Goldstein and Infeld, 1984)

=(al(j—1)(1—2)<j—3)¢i—2a3uovo¢x, a3¢xu%(j—1)>
a3¢xV3(j‘ D, a(j- 1)(j”2)(j'3)¢i—2a3u0 Voo

If we use (39) for u,V,, then det T =0 leads to
JGFDG=3)G - 6j+17)=0 (42)
so that we have resonances at j =0, —1, 3, 4, but those from the last factor

are not integral. For j =1 in the recursion relation,

6
2l¢;zcu0 (1 _—;:—1—1> +68al¢x(u0x¢xu0¢xx)

3

+Sa3(“3V0x_2¢xu0V0”1) =0 (43)

6
_21(153:‘/0 (1 _-ﬂ> +6€a1¢x( V0x¢x + Vod)xx)
a

3
+ ga,( V(2)u0x —2¢,u, Vo V) =0 (44)

Multiplying (43) by u, and (44) by V,, if we add and subtract, then we get

6
4ipZu,V, (1 __a,) +6ea;,¢02(uy, Vo— o Voo ) + £as Voligx
a

3

[—(uoxVo— Voxtio) + 20, (u, Vi — Vouy 1 =0 (45)

Since ¢ is small, we demand 1—6a,/a;=0, so that equation ( ) is
written as

up Vit Votly = ¢y (46)

and we also get

Viug— Vou, = (ug, Vo — Voutio)/ s (47)
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along with
u Vo=~ (48)
Putting j =2 in the recursion relations, we obtain
— g, = —i(2ugry + UgDyy ) + 20UV, + dig Vou,
+ £0,[ —(3uoxxx + 3 thoxxx T Ugrxx)]
+ eaz(deug Vo— douy Vot ug Vi + 2uouy Voo ) — Voo,
=i(2 Voxthx + Vo) —2iVou, — 4iu, Vo V;
+ e[ (2 Vorxths + 3 Voxux + Vot )]
+ eay( e Vit — ¢ Viug+ Vo, + 2V, Viug,) (49)

Now, since we want to truncate the expansions at constant level, we set u;,
V; =0, j=2. This yields, from (47) and (49),

o Vo— ttg Vo = A2 (50)
26,/ b = £a1(24 — 7 +31%) (51)

where
U=/ s  mVi=iA"—¢7) (52)

Now for j =3 (after the truncation is taken into account) we get
U, = ilgex + 207 Vo + Aitigut; Vi + £, Ugrx (53)
53
Vor = =iV —2iViug—4iVo Vyuy + £a; Vo

from which it is easy to deduce

2¢u/ P (x) = ea,(2¢,— > +32%y) (54)

Itis now interesting to observe that equation (54) is nothing but the derivative

of ( ); that is,
8124, ETTEITAN I
ax[(bx ea, (21//1 V] +2/\ )] 0

so that they are compatible. Now, by subtracting upon multiplication by
V, and u,, we can deduce from (53) and (50)

Voo (o) _ (42 0y 3 z) ( 2_ A_z)
d)iat(%)—:(«/f 200 -5 Feain (207 4+ (55)
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A similar consideration at j =4 leads to
(V1) = 1 (Vlulx Uy Vi)t eas[ (4 Vi) oo = 3(t1 Vi)

+6ea,(u, Vi), V, (56)

d . i
Vie (7) =il (4 Vi) = 2up, Vi ] +H4i(u, V1)
1

+ Eal( Vlulxxx —u lexx) —66‘11“1 Vl( Vlulx — U le)

Putting the values of u, Vi, etc., we get

S 3A7
v, = [{"’ } }m] [{ax}nwwx}x 2
1/ ¥
1., 1 2 2 3 2
X{(bx}x_i)\ 175 1+‘//1+4‘//1/\] (57)
For compatibility with (52) we should have
{¢x}x 2 _
[ P +2{¢x}] =0, A%gxh=0 (58)

{¢, x} being the Schwarzian derivative

te. }__(% 2<%>2

In the above computation A is a constant of integration, which also
can be a function of time. It is easily observed that even then equations
(50)-(52) and (54) remain unchanged, except that we now write A(¢) instead
of A. We have an extra equation

Y — A = —id (Y — i) + ear (Y — 30 %4,
IV I =300 (59)

From equation ( ) it again follows that A*{¢x}, =0, so either A =0 or

{ox},=0.

If we set A =0, then we deduce

(W =2¢n) =—(i/ )2y, — &)

immediately leading to ¢, — ¢4y, =0, which is nothing but {¢x}, =0, again
fixing ¢. Thus we conclude that the perturbed NLS equation does not pass
the Painlevé test, in contrast to the perturbed KdV equation. We now show
that though our equation (PNLS equation) does not conform to the Painlevé
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criterion, yet it is possible to deduce its conservation laws and the corre-
sponding Lax pair via the approach of Chen and Liu.

The Converservation Laws and Lax Pair

Let us now linearize equation (35) by setting g > g+ e¢, g* > q* + etfr;
we then get
().~ ()
¥/ ¥
with M given as

M= (—i82—4i|qlz+ e(a,0° - as2qq¥), 2ig*+ ea3q*82)

60
—2ig*+easq’s, i*+4ilq|*+e(a:0’—2asq%q) (60)

We now substitute (Iino et al., 1982)

P

¢ =exp (kx+wt+J de)

—0oC

X

¢=Aexp(kx+wt+J de)

-0

and ensure that A, T are analytic functions of k to be expanded as

T=Y k"T,, A=Y kA, (62)

n=0 n=0

Equations obtained for A,, T, after we substitute (61) in equation (60) can
be solved recursively for the coefficients T, and A,. Let us assume that
each T,, A, have perturbed and nonperturbed contributions written as
T,=T.+eT, and A, = A)+ eA). We then get the results shown in Table L.

Now, as per the ansatz of Chen and Liu, we consider M to be the time
part of the Lax pair. For the space part we observe that these T9' can lead
to solution sets of ( ) by 8T,/8q, 6T,/8q*, which can be recursively
generated through an operator L of the form

ot+a b
L= =L,+L
< c —a+d> o (63)

a 0 a b
L: =
° (0 —a>’ b (c d)

We now impose the condition that L, =[A, L] holds up to first order in ¢,
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Table 1

T° A®
n=0 0 0
n=1 —2g4* 0
n=2 2q%q, q
n=3 —2g*q,,. —2(qq*) —

T! Al
n=0 3ia,qq* 0
n=1 3a,(q¥q—q*q,) +iasqq? siayq*
n=2 —3a,lq.9% - q* g%~ (qq%)’]

+3ia,(qq*) (3a,—a3)qq,

+ia, (g 9" — 9:9% + q9%)

which then leads to the following equations for the coefficients (a, b, ¢, d):
asp = (iad*—id*a)y+e(a,9°a—a,ad’)Yyt(Ma—oM )y
cp =i(3*c+ o)y +ea(9Pc—cd)y+(N**+aN*)y
bap* = —i(8°b+bd>)y* + ea,(8°b — ba’)y* —(Na+aN)y* (64
dyp*=i(3%°d — do*)* +ea,(3°d —d3)y* + (IM* — M*a)y*

For the actual solution we again assume that a=a’+ea', b=>b"+¢b',
c=c"+¢ec', etc., and regard g, g* as small quantities; so we use, as in the
mode coupling approximation,

q :Z elx+ilthl, l// — ekxAikztdjk (65)
Then if we Fourier decompose the coefficients a°, a', etc, as
a°=12 al, exp[(I+m)x+i(I>—m®)t] (66)
we obtain
m-+k
20t (12259
a; 919 1+ k
. m—+k m?+ mk+ k*
al,=—iaq,q%, (1+1_+E> (1+2k+2m +—~T> +2a5q,9%
bO = —gtqr 1+m+2k

) (k+m)
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1 1+m
1 _ M Pem? +3k2
b, 2m1b'm(l+k)( +k)(l m*+2lm+3lk+3mk+3k*)
(67)
UWETE
ik mrk) 97
CO — m (.._1__4___1__.)
L AT ATTY
oo Qi UEM) et 3k 3mk 43K
m 2 "I+ k) (m+k)
ia; 1 1
+28 gk [ ——+——
2 Bl (l+k m+k>

Similar results can also be deduced for d°, d'. It is interesting to note that
though we deduced the values by assuming the Fourier decomposition, it
is independent of it, since the last expressions can be interpreted as operators
on the fields g, ¢, etc. As an example, we easily observe that

(m+k)*—mk

1+k)+(m+k)+
a1+ +(m+ )+

Ued1q (68)

is nothing but

a\[q* ox(qy) +q ox(q*y) +qE D™ (dq) +qE D7 (¢g) + q*D“(q«//xxz]
69)

So if we assume that this holds for all, then dropping ¢, we can write the
operator expression

a,[q* ox(q)+q ax(g*)gE D7 (q)+g¥D (g ox)+q*D (g )] (70)

Similar considerations hold for the other coefficients. Thus although the
peturbed NLS equation does not pass the Painlevé analysis, it is possible
to find a Lax pair via the Chen-Liu approach.

6. DISCUSSION

In the above analysis we have considered the questions of complete
integrability and existence of an infinite number of symmetry conservation
laws of perturbed KdV and perturbed NLS systems. The arbitrary constants
occurring in the perturbing term could be fixed by demanding the smooth
behavior of Lie-Backlund symmetry with respect to the perturbation par-
ameter. It is interesting to note that the same set of values arises when we
apply Painlevé analysis to PKdV. Though various branches exist, only one
branch has the full Painlevé behavior, where we prove the consistency of
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the overdetermined set of equations. We then show that it is possible to
deduce the Lax pair from these Painlevé equations. Lastly, it is important
to note that the set of resonances in our PKdV is different from those of
the ordinary KdV equation, yet our equation ( ) goes smoothly to those
of Weiss et al. as £ > 0. The same approach, when applied to the case of
the perturbed NLS equation, yields that this perturbed system does not
conform to the Painlevé criterion at all. But it is really surprising to observe
that one can find a Lax pair for the perturbed NLS system through the use
of many conservation laws and their recurrence relation following the
approach of Chen and Liu. Perhaps this another example that Painlevé
analysis is not a necessary and sufficient condition for the test of complete
integrability of nonlinear systems. In the Appendix we give another example
of a Hamiltonian KdV system that is still believed to be completely
integrable, has infinite symmetry recursion operator and Hamiltonian struc-
ture, but does not pass the Painlevé test.

APPENDIX

We discuss a new nonlinear pde known as the “Hamiltonian KdV”
system discussed by Olver (1987), which was deduced from the basic
equations of hydrodynamics by a modified perturbation theory respecting
the symplectic structure at every order. The equation under consideration
reads (Olver, 1987)

3 15
u,+ux+5auux+-§-uxxx+-?§(u2)xxx+§i a*utu, =0 (A1)

Proceeding as before, we find the leading exponent to be —2. So we set
u =Z;i0 uqu’_2 in (A1), leading to the recursion relation,

(=60t ape 15, + (= 6)thy_sp + 143
3l 2 (= 1= 4) Gt Uyt ]
+BLG =G =5 =61 23+ (~5)(j —6) Bty_3upr + 313 b.br)
+(J = 6)(Bbath—axx T 3Puallimax + Uj—sbrons) + U5 ]
+162B{(j =D =5 =6ttty %+ (j=5)(j = 6)[32(thnthy_m—1)x
+3 ¢ Dcthmtty 1]+ (= 6)[3u(ththim—2)xx T 3Prx(Umtly ) ¢
+ Do (rthy - 2) ]+ (Ut 3) )

+ (15/32)a2[umunuj—m—n(j —m-n _2)¢x + umunujfm—n—lx] (Az)
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From this it is easy to obtain

8 8
= B¢x’ ulz_ﬁ_¢m (AB)
o
The coefficient of u; in (A2) yields resonances at j = ~1, 6, 10. Furthermore,
¥, 17
Uy = ( TR ——w) (A4)
o
g W 5 )
=k —+
( 3 12 3ak (AS)

where ¢ = ¢,/ ¢,. But if, following Weiss, we want to truncate the expansion
at the constant level by setting u; =0, i=3, then it is seen that one need
not proceed up to r=6 or 10, and we get a negative result.
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